
Removing ROP Gadgets from OpenBSD

Todd Mortimer
mortimer@openbsd.org

Abstract

Return Oriented Programming (ROP) is a common exploita-
tion technique that reuses existing code fragments (gadgets)
to construct shellcode in a compromised program. Recent
changes in OpenBSD’s compiler have started to reduce the
number of gadgets in x86 and arm64 binaries, with the aim of
making ROP exploitation more difficult or impossible. This
paper will cover how ROP gadgets emerge from legitimate
code, how OpenBSD’s compiler removes these gadgets, and
the effects on performance, code size, and ROP tool capabil-
ities. We find that it is possible to meaningfully reduce the
number of ROP gadgets in programs, and to effectively hinder
ROP tool capabilities.

1 Background

Return oriented programming (ROP) [5] is an exploitation
technique that uses fragments of existing programs in unin-
tended ways to effect control over a compromised process. In
contrast to traditional shellcode injection, ROP attacks inject
a series of return addresses - a ROP Chain - into memory
and which, when execution returns to the first address in the
chain, cause execution to iterate through a series of small code
fragments which have the same effect as traditional shellcode.
ROP is a powerful technique in environments which disable
simultaneous writable and executable memory (W�X), since
it does not rely on injecting executable code into program
memory, but instead relies only on program fragments that
already exist. These program fragments are called gadgets,
and each gadget consists of a (typically small) sequence of
instructions followed by a return. On aligned architectures,
these returns are part of the intended instruction stream that
make up the program, but on unaligned architectures such
as x86, these returns can also emerge from jumping into the
instruction stream at unintended offsets and causing the exist-
ing code to be interpreted differently from what was intended.
ROP techniques have been used in attacks on real world sys-

tems, including recent attacks exploiting CVE-2018-57671,
CVE-2018-74452 and CVE-2018-16865/63.

Numerous techniques have been proposed to mitigate
against ROP exploits, including return address verification
techniques [2] and control flow verification [1] which aim to
prevent control flow being redirected towards a ROP chain.
Attempts have also been made to attempt to remove or render
unusable ROP gadgets themselves [4]. This paper describes
ROP exploit mitigations in OpenBSD which are motivated by
gadget reduction and removal, though some mitigations also
verify return control flow through return address verification.

In order to mount a successful ROP attack against a vulner-
able binary, the attacker must first catalogue all of the gadgets
available in a given binary, then identify a sequence of gad-
gets which will result in their desired effect. This process
of scanning binaries for gadgets and then constructing ROP
chains which have a desired outcome is somewhat tedious and
error prone, so numerous tools exist to make this easy, such
as ROPGadget4, ropper5, angrop6, or pwntools7. In this paper
we will rely on the output from one of these tools, ROPGad-
get, to measure our effectiveness. Specifically, we will use
the number of unique gadgets found by this tool to measure
the effectiveness of gadget removal in the OpenBSD kernel
and libc, which we have chosen because they are large and
diverse binary objects, and are popular exploitation targets.
ROPGadget also includes an option to generate a ROP chain
that results in an exploited program executing a command
shell. Obtaining a command shell is a common exploitation
goal, since once an attacker has a command shell they can
execute arbitrary other commands on the compromised sys-
tem. We will use this feature to estimate the effectiveness
of our efforts to impede mounting successful ROP attacks

1https://www.fidusinfosec.com/remote-code-execution-cve-2018-5767/
2https://www.secureauth.com/labs/advisories/mikrotik-routeros-smb-

buffer-overflow
3https://www.openwall.com/lists/oss-security/2019/01/09/3
4https://github.com/JonathanSalwan/ROPgadget
5https://github.com/sashs/ropper
6https://github.com/salls/angrop
7http://docs.pwntools.com/en/stable/

against OpenBSD binaries. The output from the ROPGadget
ropchain option is shown in Figure 1, and illustrates several
important concepts in ROP attacks. First, the program scans
the given binary and identifies all unique gadgets present -
this output is shown first. Next, in order to successfully take
control of the program and spawn a command shell, gadgets
of certain classes must be found. These gadgets are listed
after each [+] symbol, and show the address of the gadget and
the instructions that will be executed when the program jumps
to that address. The first class of gadget is a write-what-where
gadget, which allows values to be moved between registers
and memory locations. Next, a gadget must be found which
can set the syscall number required for the exec system call
- notice that these gadgets manipulate the value of the RAX
register. The third class of gadget needed sets the arguments
to the exec syscall, and these gadgets manipulate the RDI
and RSI registers to set the arguments to the exec system
call to be /bin/sh. Finally, the last gadget type is the syscall
gadget, which will execute the system call set up by the other
gadgets. After identifying suitable gadgets in each class, ROP-
Gadget will construct a ROP chain that will direct program
flow through these gadgets in such a way to cause the pro-
gram to execute a command shell. ROPGadget outputs the
ROP chain as a python program which can easily be inserted
into whatever exploit tool is being developed to target a spe-
cific program or binary. This level of ease and accessibility
is typical of ROP tooling, and illustrates the ease with which
ROP attacks can be mounted once a suitable vulnerability is
identified which takes control of program execution.

We can see from this output that a variety of gadgets are
required in order to mount successful ROP attacks on binaries,
and that there are a large number of unique gadgets available
in a typical binary. These observations motivate our approach
of reducing the number of gadgets available in a typical binary
- if we can reduce the number of unique gadgets enough
then the remaining gadgets will be insufficient to mount a
successful attack. In particular, if we can remove all gadgets
of a particular class, then it may become impossible to mount
some kinds of attacks against OpenBSD binaries, such as the
exec(“/bin/sh”) attack shown in Figure 1. We therefore do
not need to reduce the number of gadgets in a binary to zero
in order to foil ROP attacks, we only need to remove enough
gadgets, or enough types of gadgets, so that an attacker cannot
cobble together a viable ROP chain.

2 Removing Gadgets

ROP gadgets depend on a sequence of instructions terminat-
ing on a return instruction. On aligned architectures, such
as arm64, these return instructions are part of the intended
instruction stream and are part of usual function epilogues.
On unaligned architectures, such as x86/amd64, there are ad-
ditional return instructions which arise when jumping into the
instruction stream at offsets other than those corresponding

to the intended stream of instructions. These polymorphic
gadgets terminate on return instructions that are intended to
be part of constants, multibyte instructions, or other artifacts
in programs other than real return instructions. In this section,
we discuss each kind of gadget and our techniques to remove
or reduce them in compiled binaries.

2.1 Aligned Gadgets

Aligned gadgets terminate on intended return instructions as
part of normal function epilogues. On aligned architectures
these gadgets comprise some or all of the usual process of
restoring register state before a function returns. On unaligned
architectures these gadgets can also have entirely different
effects depending on the offset where the gadget begins in the
instruction stream. Examples of aligned gadgets on amd64
and arm64 are shown in Figures 2 and 3. Both of these exam-
ples are found in function epilogues, and we show both the
bytes that make up the instruction and the instruction disas-
sembly. Throughout this paper we will show both the bytes in
the compiled binary and the disassembled instructions, since
the interpretation of the bytes making up a compiled program
is central to the concept of return oriented programming. For
readers unaccustomed to inspecting program disassembly, it
may be fruitful to use objdump(1) to disassemble and inspect
various programs and libraries on their systems.

Figure 2: Aligned gadget on amd64
Bytes Disassembly
0f b6 c0 movzbl %al, %eax
5d popq %rbp
c3 retq

Figure 3: Aligned gadget on arm64
Bytes Disassembly
fe 03 05 aa mov x30, x5
c0 03 5f d6 ret

Since aligned gadgets terminate on function return instruc-
tions which are required for correct program operation, our
strategy to prevent these return instructions being used in
ROP gadgets will be to make them difficult to use outside
of normal program flow. To this end, we insert interrupt in-
structions before the returns and then add instrumentation
to the function that will allow normal program flow to jump
over the interrupts. Program flow that starts at an offset other
than the normal function entry point will fail to jump over the
interrupts and abort.

Figure 1: ROPGadget ropchain against OpenBSD 6.3 libc
$ ROPgadget . py ��r o p c h a i n ��b i n a r y OpenBSD�6 .3 / l i b c . so . 9 2 . 3

Unique g a d g e t s found : 8453
ROP c h a i n g e n e r a t i o n
===
� Step 1 �� Write�what�where g a d g e t s

[+] Gadget found : 0 x1f532 mov qword p t r [r s i] , r a x ; pop rbp ; r e t
[+] Gadget found : 0 x3b62e pop r a x ; r e t

� Step 2 �� I n i t s y s c a l l number g a d g e t s
[+] Gadget found : 0 x fa0 xor rax , r a x ; r e t
[+] Gadget found : 0 x38fe i n c r a x ; r e t

� Step 3 �� I n i t s y s c a l l a rgumen t s g a d g e t s
[+] Gadget found : 0 x4cd pop r d i ; pop rbp ; r e t
[+] Gadget found : 0 x905ee pop r s i ; r e t

� Step 4 �� S y s c a l l g a d g e t
[+] Gadget found : 0 x9c8 s y s c a l l

� Step 5 �� B u i l d t h e ROP c h a i n
p = ’ ’
p += pack (’ <Q’ , 0 x00000000000905ee) # pop r s i ; r e t
p += pack (’ <Q’ , 0 x00000000002cd000) # @ . d a t a
p += pack (’ <Q’ , 0 x000000000003b62e) # pop r a x ; r e t
p += ’ / b i n / / sh ’
p += pack (’ <Q’ , 0 x000000000001f532) # mov qword p t r [r s i] , r a x ; pop rbp ; r e t
p += pack (’ <Q’ , 0 x4141414141414141) # padd ing
p += pack (’ <Q’ , 0 x00000000000905ee) # pop r s i ; r e t
[e l i d e d . . .]
p += pack (’ <Q’ , 0 x00000000000038fe) # i n c r a x ; r e t
p += pack (’ <Q’ , 0 x00000000000009c8) # s y s c a l l

RETGUARD

RETGUARD is a mechanism that adds instrumentation to the
prologue and epilogue of each function that terminates in a
return instruction. In the prologue, we combine the function
return address with a random cookie and store the resulting
RETGUARD cookie in the stack frame. In the epilogue we
verify that the return address is the same one we recorded on
function entry. If the addresses match, then we jump over a
sequence of interrupt instructions which precede the return.
If not, then the program falls through into the interrupt in-
structions and aborts. By inserting interrupts before the return,
we mitigate against gadgets which begin shortly before the
return, and larger gadgets must pass the verification process
in order to jump over the interrupts and reach the return.

The random cookies used in RETGUARD are drawn from
the OpenBSD .openbsd.randomdata section. This special
read-only ELF section is pre-filled with random byte values at
load time by the kernel and dynamic loader (ld.so) whenever
executables or shared library objects are loaded into mem-
ory. Programs needing high quality random data can allocate
memory in this section and be guaranteed that the memory
will be randomized when program execution begins. RET-
GUARD allocates one 8 byte random cookie per function, so
the RETGUARD cookie is unique per function and per call.

amd64

The RETGUARD prologue and epilogue for amd64 are shown
in Figures 4 and 5. In the prologue, we fetch the function’s
random cookie and combine it with the return address, then
store the resulting RETGUARD cookie in the stack frame.
The RETGUARD cookie is calculated before frame setup, and
the cookie is stored in the frame along with any other callee
saved registers. Unlike the stack protector cookie, the location
of the retguard cookie in the stack frame is not important, so
it can be stored anywhere in the frame.

The epilogue retrieves the retguard cookie from the frame,
combines it with the address we are about to return to, and
compares the result with the function’s random cookie. If
the values match, then the jump is taken over the interrupt
instructions and the function returns normally. Otherwise, the
program will fall through to the interrupts and the program
will abort. A representative program epilogue is shown in
Figure 5

By disassembling the epilogue from each offset leading
up to the return, we can verify that for each possible offset
the program must either pass the random cookie check or
terminate on an interrupt. Since each disassembled ’gadget’
contains an interrupt instruction, gadget tooling like ROP-
Gadget will recognize the instruction sequence as unusable,
with the consequent effect that these gadgets are effectively
removed from the compiled binary. In the future, should ROP
tooling become clever enough to recognize the jump before

Figure 4: RETGUARD Prologue (amd64)
Instruction Description
mov off(%rip),%r11 load random cookie
xor (%rsp),%r11 xor return addr
push %rbp
mov %rsp,%rbp
push %r11 save retguard cookie

Figure 5: RETGUARD Epilogue (amd64)
Instruction Description
pop %r11 load retguard cookie
pop %rbp
xor (%rsp),%r11 xor return addr
cmp off(%rip),%r11 compare random cookie
je 2 jump if equal
int3 interrupt
int3 interrupt
retq

the interrupts, then the random cookie comparison will still
need to be passed before the jump can be taken. In this way,
RETGUARD effectively removes aligned gadgets from pro-
grams.

arm64

For arm64, the function prologue and epilogue are similar,
and are shown in Figures 6 and 7. The difference between the
amd64 and arm64 versions is that because arm64 is an aligned
architecture, we do not need to perform the disassembly exer-
cise for each offset leading up to the return instruction - the
only instructions available as ROP gadgets are the instructions
as they were intended.

Again, we see that each possible gadget in the function
epilogue contains an interrupt, and will therefore be ignored
by ROP gadget tooling. Should an attacker attempt to use
these gadgets anyway, then the return address verification step
will still need to be passed in order to bypass the interrupt.
Again, the RETGUARD instrumentation effectively removes
these gadgets from the binary.

Stack Protection

Finally, although the intent of RETGUARD is to make it dif-
ficult to use function return instructions as ROP gadgets, the
return address verification mechanism in the epilogue has
the same effect as enforcing control flow on the program. If
the return address is modified on the stack, then the program
will abort. This is the same effect as the existing stack canary,
which is placed on the stack immediately before the return
address. RETGUARD improves upon the stack canary mech-
anism by allocating one random cookie per function instead

Figure 6: RETGUARD Prologue (arm64)
Instruction Description
adrp x15, #pageoff load random cookie
ldr x15, [x15, #off] load random cookie
eor x15, x15, x30 xor return addr
str x15, [sp, #-16]! save retguard cookie

Figure 7: RETGUARD Epilogue (arm64)
Instruction Description
ldr x15, [sp], #16 load retguard cookie
adrp x9, #pageoff load random cookie
ldr x9, [x9, #off] load random cookie
eor x15, x15, x30 xor return addr
subs x15, x15, x9 compare random cookie
cbz x15, #8 jump if equal
brk #0x1 interrupt
ret

of one cookie per object file, and directly verifying the return
address instead of verifying the stack canary and inferring
the integrity of the return address. In this way, RETGUARD
provides a stronger stack protection mechanism than simple
stack canaries.

2.2 Polymorphic Gadgets

Polymorphic gadgets terminate on unintended return instruc-
tions. These gadgets do not exist on aligned architectures,
but on x86, there are four bytes which decode to a return [3]:
c2, c3, ca, and cb. These are shown in Table 1 along with
their meanings. The four kinds of return are divided between
near (c2, c3) and far (ca, cb) returns, and returns that pop
additional data off the stack (c2, ca) or not (c3, cb). The most
common kind of return found in ordinary programs is the c3
return, which is also the easiest kind to employ in ROP gad-
gets since it is a near return that does not change the current
code segment or adjust the stack.

Any time any of these bytes occur in the instruction stream,
they represent a potential gadget. These bytes occur in three
main parts of programs:

Instruction Encoding Instructions that encode with a return

Table 1: x86 Return Instructions
Byte Meaning

c2 imm16 Near return to calling procedure and pop
imm16 bytes from stack.

c3 Near return to calling procedure.

ca imm16 Far return to calling procedure and pop
imm16 bytes from stack.

cb Far return to calling procedure.

Table 2: ModR/M Byte Encodings
ModR/M

Byte
1st Operand 2nd Operand

c2 rax, r8 rdx, r10
c3 rax, r8 rbx, r11
ca rcx, r9 rdx, r10
cb rcx, r9 rbx, r11

Table 3: SIB Byte Encodings
SIB Byte Base Index Scale

c2 rdx, r10 rax, r8 8
c3 rbx, r11 rax, r8 8
ca rdx, r10 rcx, r9 8
cb rbx, r11 rcx, r9 8

byte as part of the instruction, either as part of the instruc-
tion directly, or through the encoding of the ModR/M or
SIB byte.

Constants Instructions which use a numeric constant con-
taining a return byte, such as loading a literal value onto
a register. Since OpenBSD is compiled fully PIE (po-
sition independent executable), these are always value
literals, since there are no address constants.

Relocation Addresses Instructions which reference a value
located in another program object such as a shared library
have the locations of these objects filled in at runtime.
Sometimes the location value includes a return byte.

Examples of gadgets arising from each of these program
parts are shown in Figure 8, which shows for each source
of polymorphic gadgets the bytes making up the intended
instruction(s), what the intended instruction was, and what
the gadget instructions are. In each example, the gadget bytes
are highlighted for easy identification. In the first example,
the unintended return instruction comes from a ModR/M byte
encoding the eax / ebx register pair. In the second example,
the constant value loaded into rdi contains a c3 byte. In the
last example, the address of the bcmp function happens to
encode with a c3 byte.

In the case of instruction encodings, the majority of unin-
tended return instructions originate from the ModR/M or SIB
byte of instructions that operate on one or two registers. For
some combinations of registers the ModR/M or SIB byte will
be encoded as a c2, c3, ca or cb byte, and therefore constitute
a possible return. These register combinations are shown in
Tables 2 and 3, where the identified registers can also be ref-
erenced by their 8 (low), 16, 32 or 64 bit aliases (eg. al, ax,
eax, rax).

We pursue two strategies for removing polymorphic gad-
gets from binaries. We first attempt to transform instructions

containing return bytes into equivalent instructions that do
not contain any. If this is not possible, either because there
is no equivalent instruction, or because it is not safe to trans-
form, then we prepend the instruction with an alignment sled.
This alignment sled is a jump instruction followed by 2-9
interrupt instructions. The intent of the alignment sled is to
limit the offsets from which a gadget may start and which will
terminate on the unintended return byte. By inserting several
interrupt instructions before the problematic instruction, we
increase the likelihood that any execution starting from an
unintended offset in the instruction stream will execute an
interrupt and abort.

We implemented two approaches for transforming prob-
lematic instructions into safe alternatives: Alternate register
selection; and Alternate code generation. These strategies are
detailed below.

Alternate Register Selection

A survey of ROP gadgets present in the OpenBSD amd64
kernel revealed that many polymorphic gadgets result from
c3 bytes which encode operations on the B series of regis-
ters (rbx, ebx, bx, bl). We can therefore reduce the number
of gadgets by simply reducing the use of these registers. We
have modified the register allocation preference in the clang
compiler to place these registers after each of the other gen-
eral purpose registers, so that the B registers are assigned
last. As a consequence, many functions which do not need
all of the available general purpose registers will never use
the B registers, and will therefore not be at risk of encoding
unintended c3 bytes when operating on those registers.

This change is straightforward to implement - we simply
change a list:

Before RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, RBX,
R14, R15, R12, R13, RBP

After RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, R14,
R15, R12, R13, RBX, RBP

This change is entirely free. There is no additional compile
time cost, and no additional runtime cost. Despite being free
and trivial, we shall see in Section 3 that it has a measurable
effect on the number of unique gadgets present in OpenBSD
binaries.

Alternate Code Generation

For instructions which do use the B series registers or other
pairs of registers which can encode a return byte (as per Ta-
bles 2 and 3), or which may use a problematic constant, we
have modified the clang compiler to inspect each instruction
before it is emitted and attempt to exchange these problematic
instruction for safe alternatives. This is the X86FixupGadgets
pass, which identifies potential ROP gadgets and attempts to
mitigate against them. An initial implementation of this pass

Figure 8: Types of polymorphic gadgets
Gadget Source Bytes Intended Instruction Gadget Instruction

Instruction Encoding 83 e3 01 01 c3 andl $1, %ebx
addl %eax, %ebx

add %eax, (%rcx)
ret

Constant 48 c7 c7 a5 c3 84 81 movq 0x8184c3a5, %rdi movsl (%rsi), (%rdi)
ret

Relocation Address e8 95 c3 3e 00 callq 4113301 <bcmp> xchgl %ebp, %eax
ret

transformed a specific subset of instructions that encoded
to include c3 return bytes, and was included in OpenBSD
6.4. A more general version of this pass is being prepared
for OpenBSD 6.5 that targets all four kinds of return bytes
and problematic constants. This pass uses two general strate-
gies for gadget reduction: direct instruction modification and
alignment sled padding.

For instructions which include a return byte because of
their particular register operand encoding, we observe that the
same instruction with the register operands reversed does not
result in a return byte in the emitted instruction. For example,
an instruction encoding a ModR/M byte using rax as the first
operand and rbx as the second operand will emit a ModR/M
byte of c3, according to Table 2, but if the operands were
reversed, so the first operand was rbx and the second was rax,
the ModR/M byte would not encode any of the four return
bytes (it would instead encode to d8). This relationship holds
for all of the problematic register pairs identified in Tables
2 and 3 - we can always reverse the operands and emit a
safe instruction. Similarly, for instructions which use only a
single register operand, we can safely substitute the equivalent
A series register. Our strategy for fixing instructions which
encode unintended return bytes through the ModR/M or SIB
bytes is therefore to insert an exchange instruction before
and after the problematic instruction which swaps the values
of the operand registers, and then modify the instruction to
reverse the order of the operands. The effect is to perform
the exact same operation as the intended instruction, but do it
with the operands reversed. The resulting instructions are free
of unintended return bytes and cannot terminate ROP gadgets.
An example of this transformation is shown in Figure 9, which
shows the original instruction bytes and intended instruction
and the transformed bytes and instructions. Notice that the
transformed instructions do not contain any return bytes.

For instructions which cannot be modified by exchang-
ing their operands, or which encode constants that include
a problematic byte, we insert an alignment sled before the
instruction in order to interfere with gadgets which terminate
on the unintended return byte. There are many reasons why
we may not be able to reverse the operands used in a given
instruction, such as instances when one of the registers is not a
general purpose register (such as the xmm registers), the byte
value is non-optional (such as the VMRESUME instruction,

which encodes as ’0f 01 c3’), the instruction is a branch or
other instruction that changes control flow, or the instruction
implicitly uses a register that is also one of the operands. The
alignment sled is a jump instruction followed by a series of
2-9 interrupt instructions. The effect of the interrupt instruc-
tions is to cause unaligned access to the instruction stream to
result in the program aborting.

Figure 10 shows the effect of inserting an alignment sled
before a problematic instruction that encodes a constant with
a return byte. By placing the alignment sled before the in-
struction, any gadgets which would have used the c3 byte as a
return are constrained to avoid executing any of the interrupt
instructions which precede it, with the result that unaligned
execution of the instruction stream is impractical, and the c3
byte cannot be used as a return and therefore cannot be used
in a ROP gadget.

3 Results

OpenBSD has applied these mitigations to the amd64 and
arm64 platforms. RETGUARD has been applied to both plat-
forms for the 6.4 release, and mitigations targeting polymor-
phic gadgets have been applied on the amd64 platform over
the 6.3 and 6.4 releases. An enhanced version of the alternate
code generation mitigation is planned for the 6.5 release.

3.1 arm64

RETGUARD was applied to the arm64 platform during the
OpenBSD 6.4 release cycle. Compared to the OpenBSD
6.3 release, the number of gadgets found by ROPGadget de-
creased from 69935 to 46, as shown in Table 4. This decrease
is attributable to the arm64 platform requiring instruction
alignment, so each function protected by RETGUARD be-
comes effectively gadget free. The remaining 46 gadgets are
all from assembly level boot code functions, which are un-
mapped after boot. Consequently, the OpenBSD kernel on
arm64 is effectively gadget free after boot. The results in
userland are much the same, with only a small number of
assembly level functions contributing gadgets to userland ex-
ecutables and libraries. These small numbers of gadgets are
generally insufficient for constructing arbitrary ROP chains,

Figure 9: Instruction transformation
Original

Bytes
Original Instruction Transform

Bytes
Transform Instruction

48 89 c3 mov %rax,%rbx 48 87 d8
48 89 d8
48 87 d8

xchg %rbx,%rax
mov %rbx,%rax
xchg %rbx,%rax

Figure 10: Alignment sled
Original Bytes Original Instruction Transform Bytes Transform Instruction

49 bc c3 f5 28 5c
8f c2 f5 28

mov $0x28f5c28f5c28f5c3,%r12 eb 06
cc
cc
cc
cc
cc
cc

49 bc c3 f5 28 5c
8f c2 f5 28

jmp 6
int3
int3
int3
int3
int3
int3

mov $0x28f5c28f5c28f5c3,%r12

Table 4: Number of Kernel Gadgets (arm64)
OpenBSD Version # Unique Gadgets

6.3 69935
6.4 46

and so executing ROP attacks on OpenBSD binaries on the
arm64 platform is generally more difficult or impossible.

3.2 amd64

ROP mitigations have been applied to the amd64 platform
over several release cycles. The alternate register selection
mitigation was applied for the 6.3 release. An implementation
of the alternate code generation mitigation targeting some
common gadget forms was applied for the 6.4 release, in
addition to RETGUARD.

The alternate register selection mitigation removed approx-
imately 6% of unique gadgets from the kernel, with negligible
impact on code size and performance. The alternate code im-
plementation removed an additional 5% of unique gadgets,
at the cost of 6 bytes of additional code per transformation
(which yielded an approximately 0.15% larger kernel). Since
the xchg instruction is inexpensive to execute, the perfor-
mance impact of this mitigation was negligible.

At the time it was applied, RETGUARD removed approxi-
mately 50% of total gadgets from the OpenBSD kernel, and
around 20% of unique gadgets. The RETGUARD instrumen-
tation adds 31 bytes per function, and increased the size of the
kernel by approximately 7%. Additionally, each function re-
serves 8 bytes of space in the .openbsd.randomdata section for
its random cookie, with the consequence that the random data

section grows significantly compared to OpenBSD 6.3, and
takes more time to fill when an executable launches. Perfor-
mance overhead of RETGUARD is divided between startup
cost, which is dominated by generating the random cookies
for each function, and the runtime cost of executing the in-
strumentation in each function. For a typical system build
workload, the runtime cost of RETGUARD is approximately
2%. Results summarizing the number of unique gadgets found
in the OpenBSD amd64 kernel across releases is shown in
Table 5. This table shows the OpenBSD version, number of
unique gadgets, and kernel size for successive OpenBSD re-
leases, with preliminary numbers shown for OpenBSD 6.5,
which is currently in development. When reading this table, it
is important to point out that many things were added to the
kernel during each release cycle which contributed to the over-
all size of the kernel and the number of gadgets. For example,
in the 6.4 release, RETGUARD accounted for approximately
7% of the additional code size, but the kernel grew by approx-
imately 17%. The remaining 10% of code was new drivers
and other enhancements, and this code also contributed to
the overall gadget count. With this in mind, we introduce a
new metric for measuring gadget density: unique gadgets per
kilobyte. With this metric, we can estimate the effect of ROP
gadget mitigations independent of the code size and more
easily compare the effectiveness of gadget reduction over re-
leases. Figure 11 shows kernel gadget density over several
OpenBSD releases, including an estimate of new alternate
code generation mitigations planned for OpenBSD 6.5.

In userland we found similar results, with the number of
unique gadgets declining in successive OpenBSD releases.
Figure 12 shows the total number of unique gadgets in the pop-
ular sshd binary and all linked libraries. This figure shows a re-

Figure 11: Kernel gadget density (amd64)

6.2 6.3 6.4 6.5
0

1

2

3

4

5

OpenBSD Version

U
ni

qu
e

G
ad

ge
ts

 /
KB

Table 5: Number of Unique Kernel Gadgets (amd64)
Version # Unique Gadgets Size (kB)

6.2 60589 13167
6.3 57980 13190
6.4 51229 15438
6.5 21807 15852

duction of over 70% in the number of unique gadgets present
in a typical running sshd executable between OpenBSD 6.2
and the upcoming OpenBSD 6.5.

3.3 Effect on ROP Tooling

Figure 1 showed the output from ROPGadget against the
OpenBSD 6.3 libc, where we saw the tool successfully gen-
erated a ROP chain that executed a command shell using
gadgets found in the libc binary. When we run the same tool
against the OpenBSD 6.4 libc, we find that the tool fails to
find a ROP chain that will result in the program executing a
command shell. This is shown in Figure 13, where we see that
after applying the mitigations described in this paper, the ROP
tool is incapable of finding a write-what-where gadget, and
therefore unable to construct a ROP chain that will execute
a command shell. This result is true of many of the binaries
and libraries included in OpenBSD 6.4, including sshd and
all of it’s linked libaries.

4 Conclusion

In this paper we have described a series of ROP mitigations
applied in OpenBSD for both aligned and polymorphic (un-
aligned) ROP gadgets. For aligned gadgets, we have deployed
RETGUARD on both amd64 and arm64 platforms, which re-
sulted in a significant reduction of unique gadgets on amd64,

Figure 12: Number of gadgets in sshd and libraries (amd64)

6.2 6.3 6.4 6.5
0

2000

4000

6000

8000

10000

12000

OpenBSD Version

N
um

be
r

U
ni

qu
e

G
ad

ge
ts

sshd
libcrypto
libutil
libz
libc
ld.so

Figure 13: ROPGadget ropchain against OpenBSD 6.4 libc
$ ROPgadget . py ��r o p c h a i n

��b i n a r y OpenBSD�6 .4 / l i b c . so . 9 2 . 5

Unique g a d g e t s found : 5994
ROP c h a i n g e n e r a t i o n
==
� Step 1 �� Write�what�where g a d g e t s

[�] Can ’ t f i n d ’mov qword p t r [r64] , r64 ’ g a d g e t

and an almost total elimination of gadgets on arm64. For poly-
morphic gadgets, we have deployed a series of mitigations
that eliminate gadgets either through trivial changes to regis-
ter selection preferences, direct instruction modification, or
forcing alignment in the instruction stream. These mitigations
have resulted in a significantly reduced number of gadgets in
OpenBSD binaries, both in raw numbers and in gadget density.
We have shown that, as a result of these efforts, constructing
ROP chains on OpenBSD is more difficult than before, and
specifically shown that common ROP tools are now unable to
construct ROP chains that execute a command shell against
OpenBSD’s libc and other binaries and libraries.

References

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Lig-
atti. Control-flow integrity principles, implementations,
and applications. ACM Transactions on Information and
System Security (TISSEC), 13(1):4, 2009.

[2] Thurston HY Dang, Petros Maniatis, and David Wag-
ner. The performance cost of shadow stacks and stack
canaries. In Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Security,
pages 555–566. ACM, 2015.

[3] Intel R�. 64 and ia-32 architectures software developer’s
manual. Volume 3B: System programming Guide, Part, 2,
2011.

[4] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide
Balzarotti, and Engin Kirda. G-free: defeating return-
oriented programming through gadget-less binaries. In

Proceedings of the 26th Annual Computer Security Ap-
plications Conference, pages 49–58. ACM, 2010.

[5] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Ste-
fan Savage. Return-oriented programming: Systems, lan-
guages, and applications. ACM Trans. Inf. Syst. Secur.,
15(1):2:1–2:34, March 2012.

